
Int. J. Multiphase Flow, Vol. 1, pp. 25-56. Pergamon Press, 1973. Printed in Great Britain. 

T H E  M O T I O N  O F  A C L O S E L Y - F I T T I N G  S P H E R E  
I N  A F L U I D - F I L L E D  T U B E  

F e i e s  M. BUNGXYt and HOWAaD B ~  

Department of Chemical Engineering and Biotechnology Program, Carnegie-Mellon University, 
Pittsburgh, Pa. 15213, U.S.A. 

(Received 2 May 1973) 

Abstract--Singular perturbation techniques are used to investigate the slow, asymmetric flow 
around a sphere positioned eccentrically within a long, circular, cylindrical tube filled with viscous 
fluid. The results apply to situations in which the sphere occupies virtually the entire cross section 
of the cylinder, so that the clearance between the panicle and tube wall is everywhere small com- 
pared with both the sphere and tube radii. The technique is an improvement over conventional 
"lubrication-theory" ansdyses. 

Asymptotic expansions, valid for small dimensionless clearances, are obtained for the hydro- 
dynamic force, torque and pressure drop for flow past a stationary sphere, as well as for the case 
of a sphere translating or rotating in an otherwise quiescent fluid. These expansions are employed 
to predict the macroscopic behavior of both a neutrally-buoyant sphere suspended in a Poiseuille 
flow, and a sedimenting sphere in a vertical tube. 

The results find application in capillary blood flow, pipeline transport of eneapsuiated materials, 
and falling-ball viscometers. 

1. I N T R O D U C T I O N  

The modeling of blood flow through individual capillaries has been the subject of numerous 
theoretical studies (Barnard, Lopez & Hellums 1968, Chen & Skalak 1970, Fitz-Gerald 
1969, Hochmuth & Sutera 1970, Lighthill 1968, Wang & Skalak 1969). These studies all 
presume that blood plasma exhibits incompressible Newtonian properties, ,and that a 
lubricating layer of plasma surrounds the erythrocytes, thereby keeping the cells from 
direct contact with the vessel wall. If these premises are valid, the thickness of the plasma 
film between a red cell and the wall in a fine capillary would typically be small in comparison 
to the characteristic radial dimensions of either the capillary or the deformed cell. This 
view is supported by the in vitro measurements of Hochmuth, Marple & Sutera (1970). 
Consequently, previous investigators have invoked lubrication-theory arguments to 
render tractable the governing fluid-mechanical equations of motion (Barnard et al. 1968, 
Chen & Skalak 1970, Fitz-Geraki 1969, Hochmuth & Sutera 1970, Lighthill 1968). 
Solutions of the simplified equations which result resemble asymptotic expansions in 
terms of the clearance between the cell and capillary wall. Since these equations are 
simplified in a nonrigorous manner, lubrication-theory analyses cannot be relied upon to 
yield more than the correct leading term of a proper asymptotic expansion. In the present 
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study, the asymptotic solution of the model flow equations is placed upon a firmer mathe- 
matical foundation. A systematic expansion procedure is developed, which draws upon 
unifying concepts from singular perturbation theory. 

The model system consists of a rigid sphere and a Newtonian fluid within a long rigid 
cylindrical duct. The sphere diameter is comparable to the transverse dimension of the 
cylinder. Sphere and fluid densities may, or may not, be matched. Although the relationship 
to capillary blood flow (Brenner & Bungay 1971) furnished the original motivation for 
investigating this particular model, the results of the analysis have applicability to other 
fluid-particle systems--such as falling-ball viscometers, rotameters, and capsule transport 
in pipelines. 

Utilization of singular perturbation theory to analyze particle-fluid behavior close to a 
rigid boundary was initially demonstrated by O'Neill & Stewartson (1967), Goldman, 
Cox & Brenner (1967), and Cox & Brenner (1967b). These authors treated the motion of a 
sphere in a fluid of semi-infinite extent, bounded by a plane wall. Their results were in- 
corporated by Bungay & Brenner (1973) into an analysis of flow within a circular cylinder 
in which a relatively small sphere moves in close proximity parallel to the tube wall. 

Singular perturbation analyses complement regular perturbation analyses of hydro- 
dynamic interaction phenomena, e.g. the "method-of-reflections". Cox & Brenner (1967a) 
developed a general theory for the effect of rigid walls upon the h3,drodynamic resistance 
of a translating-rotating particle. Their theory rests on regular expansions, which are valid 
in the limit where the particle is small compared with its distance from the boundaries 
girdling the flow. This same restriction applies to method-of-reflections results, such as 
those pertaining to a small sphere moving within a circular tube (Brenner & Happel 1958, 
Brenner 1966, 1970, Greens/ein & Happel 1968). 

When the fluid motion is axisymmetric, the range of validity of regular expansions can 
be extended to relatively large ratios of particle/wall diameters. Generation of such higher 
order terms by the method of reflections is typified by Bohlin's (1960) treatment of flow 
past a sphere whose center lies along the axis of a circular tube. Haberman & Sayre (1958), 
considering this same symmetrical configuration, arrived at more accurate expansions 
which were convergent for sphere/tube radius ratios between zero and 0.8. Wang & Skalak 
(1969) extended these single sphere results to an infinite train of identical, equally-spaced 
spheres, all of whose centers coincide with the tube axis. Convergence of the resulting 
expressions for drag and pressure drop was obtained up to radius ratios of 0-9, but the 
values near this upper limit were believed accurate only to two significant figures. Effect 
of particle spacing on hydrodynamic resistance was found to be weak in the train-of-spheres 
model of Wang & Skalak (1969). Each sphere behaved as an essentially isolated body for 
particle spacings exceeding approximately one tube diameter. The large sphere results, 
which are of interest in connection with the present investigation, indicate that particle- 
particle interactions are weak for all spacing distances. Chela & Skalak (1970) replaced the 
spheres with an infinite train of identical spheroids, whose symmetry axes lie along the 
tube axis. The flow remains axisymmetric in this case too, so that the influence of particle 
shape could be partially investigated to a similar order of accuracy. Particle interactions 
and wall effects for various related slow flow situations have been extensively reviewed 
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(Brenner 1966, Cox & Mason 1971, Goldsmith & Mason 1967, Happel & Brenner 1965). 
Each of the above-cited theoretical investigations assumes that fluid inertial effects 

are small. A scheme for incorporating the additional effects stemming from fluid inertia 
has been developed by Cox & Brenner (1968), and discussed in detail by Brenner (1966), 
for spheres satisfying the method-of-reflections requirement of being small compared 
with their distance from the nearest wall. No comparable technique has yet been formulated 
for closely-fitting spheres. In Section 4 we suggest a scheme whereby the Reynolds number 
dependence can be incorporated into the singular perturbation analysis. 

We begin with the creeping flow formulation of the problem of flow around a single, 
closely-fitting sphere in Section 2. The cylinder cross section is subsequently chosen to be 
that of a circular tube in Section 3. Singular perturbation expansions are derived in Section 4 
for the particular case of a sphere undergoing a purely translational motion in an otherwise 
quiescent fluid. Corresponding results for a sphere in pure rotation, and for flow past a 
stationary sphere, are summarized in Sections 5 and 6. The situation most analogous to 
capillary blood flow is treated in Section 7, namely a neutrally-buoyant sphere suspended 
in a Poiseuille flow. We conclude with a discussion of the falling-ball viscometer in Section 8. 

2. F O R M U L A T I O N  O F  T H E  P R O B L E M  

Consider a long cylinder of constant, but arbitrary, cross section filled with a Newtonian 
fluid of viscosity/~ and density p. The fluid moves in steady laminar flow atmean velodty 
V,. Let a sphere of radius a now be suspended at some arbitrary lateral position in the 
cylinder, the mean velocity being maintained at the same value V, as when the sphere 
is absent. In general, this requires the maintenance of a pressure difference between the 
two ends of the cylinder which exceeds that required in the absence of the sphere, i.e. the 
"Poiseuille" pressure drop for unidirectional flow through the cylinder. We seek to deter- 
mine, inter alia, this additional pressure drop arising from the presence of the sphere in 
the otherwise rectilinear flow. 

To formulate the problem explicitly, consider the portion of the cylinder (figure 1) 
bounded by the inside wall (Sw) and by the hypothetical planes at the duct inlet (S,) and 
exit (Se), situated at distances 1/2 on either side of the sphere center. In the absence of the 
sphere, the unidirectional velocity and pressure fields are denoted by the field pair (v °, p*). 
Introduction of the sphere alters these to (v, p). Since the disturbance of the original flow 
produced by the sphere decays exponentially with distance up- and down-stream of the 
sphere, the length I may be chosen sufficiently large such that this disturbance has effectively 
been attenuated. Hence, on the inlet and exit planes, v(S,) = v(Se) _-__ v °. The local fluid 
pressure p is uniform across these planes, as it is for the undisturbed flow. Hence, we may 
unambiguously define the pressure drop, Ap --- p(S,) - p(S,). With Ap ° = p*(S,) - p°(Se) 
the pressure drop in the absence of the sphere, the "additional" pressure drop due to the 
presence of the sphere in the flow may be defined as Ap ÷ = Ap - Ap*. 

Relative to the fixed cylinder walls, the center of the sphere translates with a velocity 
Uo. Simultaneously, the sphere rotates with angular velocity fl. Consequently, the fluid 
in contact with the sphere surface (Sp) possesses a velocity 

v = Uo + f l  x ro on Sp, [2.1] 
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Figure 1. Closely-fitting sphere in Poiseuille flow through a vertical tube. 

wherein ro is a position vector originating at the sphere center. Similarly, at the cylinder wall, 

v = 0 on Sw. [2.2] 

It is assumed at the outset that the relevant Reynolds number is sufficiently small 
compared with unity to permit neglect of the inertial terms in the Navier-Stokes equations, 
whence the basic dynamical and kinematical equations are taken to be 

#V2v = Vp, [2.3] 

V. v = 0, [2.4] 

with p the dynamic pressure. Later on, in Section 4, we will argue that since [2.3] need 
only be assumed to apply in the immediate proximity of the gap in order to calculate the 
important macroscopic parameters of the flow, the results to be obtained apply, in fact, 
to the complete Navier-Stokes equations. That is, the Reynolds number based upon 
gap width may be quite small, despite the fact that the Reynolds number based upon sphere 
size may be large (compared with unity). 

In the absence of external forces, the sphere in creeping flow translates parallel to the 
cylinder walls, without experiencing lateral migration (Brenner & Bungay 1971). Thus, 
if k is a unit vector parallel to the generators of the cylinder, 

Uo = kUo, 

Consider a cross-sectional plane perpendicular to k whose position, albeit arbitrary, is 
such that the plane intersects the sphere. As indicated in figure 1, this plane is composed 
of a portion $1 lying within the sphere, and an annular portion S 2 occupying the gap between 
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the sphere and the cylinder wall. If the cylinder cross-sectional area is denoted by A, and 
the areas of surfaces $I and $2 by AI and A2 respectively (A = A~ + A2), then the volu- 
metric flow rate across $2 relative to the containing vessel is 

f s  v .  d A  = V,,A - U o A ~ .  [2.5] 
2 

Here, dA is a directed differential element of surface area, and Vm -- A-~ f v °. dA 
~s 1+$2 

defines the mean velocity. 
For purposes of the subsequent perturbation analysis, the linear system of governing 

equations [2.1]-[2.4] is best reformulated in terms of the "disturbance" fields, 

v ÷ = v - v °, [2.63 

and p+= p - p°. [2.7] 

Since both (v, p) and (v °, p°) satisfy Stokes' equations, so must (v +, p+), whence 

#V2v ÷ -- Vp +, [2.8] 

and V. v + = 0. [2.9] 

The disturbance fields obey the boundary conditions, 

v + = Uo + f~ x ro - v ° on Sp, [2.10] 

v + ffi 0 on S,,, [2.11] 

and v+(S~) = v+(So) -- 0. [2.12] 

In addition, from [2.5], the velocity field is subject to the constraint, 

fs  v+ .  dA -- f s  (v° - U o ) . d A .  [2.13] 

To place [2.13] in a convenient form for applying the subsequent perturbation procedure, 
each of the two integration steps in the double integrals appearing therein must be effected 
separately. To accomplish this, define a circular cylindrical coordinate system, (r, 4), z), 
fixed relative to the vessel, with z axis passing through the sphere center, and lying parallel 
to the vessel wall. At the instant that the origin coincides with the sphere center o (figure I), 
the radical position of the sphere surface is given by 

r --- rp(z) on Sp, [2.14] 

in which rp ffi (a ~ - z2) 1/2, )zl < a. [2.15] 

The cylinder wall is to be represented by, r = r~,[~]. Since the cylinder cross section is 
uniform along its length, the radial position varies only with 4). The function rw[#~] is left 
arbitrary for the present, except for the geometric restriction tkat rw[~] > a for all @. 

With (u +, v +, w +) representing the appropriate circular cylindrical components of the 
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velocity field v +, the continuity equation [2.9] becomes, 

I (~ I av  + c~w + 

r + + 0 - - T  = 0. 

Multiplying by r dr and integrating across the annular gap between the sphere and the wall 
gives, with the aid of boundary conditions [2.10] and [2.1 i], 

f " Ow f "  Ov + 
, - -dz rd r  + ,p - ~ - d r - f l r ~ c o s ~ = 0 ,  

where the scalar fl is defined in [3.3]. It is understood that the restriction [zl ~ a applies 
to this relation, as well as to subsequent equations derived from it. By employing Leibnitz' 
rule, the boundary conditions, and [2.15], the last equation can be rewritten as 

w+r dr + ~ 3'1,, v + dr dz = w°r dr + 

in which v ° = kw°[r, ~b], and q[~] is a function which arises in consequence of the indefinite 
integration with respect to z. Integrating each term of [2.16] from ~ = -7r to 7r gives 

f :" flfo f w+r dr dq~ = w°r dr d e  + Uo~z 2 + q dq~. 
f l)  I t  lg 

This equation has been simplified by noting that, v+[¢ = - h i  = v+[~b = +hi.  In vector 
form this becomes, 

f, f, q d~b = v +, dA - v °, dA - Uonz:. 

Substitution of [2.13] into the last equation yields, 

f q dc~ = - Uolta 2. [2.17] 

Equations [2.8]-[2.12], [2.16] and [2.17] constitute the system of equations describing 
the flow past a sphere within a cylinder. The latter two equations are continuity relation- 
ships, which replace the volumetric flow rate condition [2.13]. 

3. C Y L I N D E R  O F  C I R C U L A R  C R O S S - S E C T I O N  

We now spedalize the general formulation of the previous section to the case where the 
cylinder is a circular tube of radius Ro. Let b denote the perpendicular distance from the 
sphere center to the tube axis. Clearly, 0 <_ b < Ro - a, the lower bound corresponding 
to the concentric position, and the upper bound to the fully eccentric position, where the 
sphere contacts the wall The radial position of the tube wall is readily found to be expressed 
by the relation, 

rw[~] = (R 2 - b 2 sin2~) 1/2 - b cos ~. [3.1] 
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In the absence of the sphere the flow is Poiseuillian, whence the undisturbed velocity profile 
is given in the cylindrical coordinate system as 

v ° = 2kl~,il - {b'Ro) = - 2(br/Ro 2) cos 4) -(r/Ro)2] • [3.2] 

With the sphere present, there exist two mutually perpendicular planes of reflection 
symmetry, these being the cross-sectional plane (z = 0) through the sphere center, and the 
meridian plane (4~ = 0. n, -r~) passing through both the sphere center and tube axis. It 
will be convenient to employ unit vectors i and j, which together with k form a right-handed, 
orthonormal set. The vector i is chosen to lie along the line of intersection of the two 
symmetry planes. A neutrally buoyant sphere occupying an eccentric location (b # 0) 
rotates. By virtue of the prevailing geometrical symmetry, the angular velocity vector 
characterizing this rotation is necessarily of the form 

II = jn, [3.33 

which lies parallel to the local vorticity vector of the undisturbed flow. Equation [3.3] 
applies to motion induced by external forces acting on the sphere in a direction parallel 
to the tube axis: e.g. a non-neutrally buoyant (but homogeneous) sphere in a vertical tube 
subject to gravity. 

For creeping flow with external forces directed parallel to the tube axis, prevailing 
symmetry conditions insure that the sphere experiences only a hydrodynamic force F and 
hydrodynamic torque To, such that 

F = kF, [3.4] 

T o = j T o. [3.5] 

The subscript o indicates that the torque is to be evaluated about the sphere center. For 
a proof of [3.4], see Cox & Mason (1971). A proof of [3.5] may be constructed along similar 
lines. 

Linearity of Stokes' equations and of the boundary conditions implies that the hydro- 
dynamic force, torque, and additional pressure drop force are linear functions of the three 
characteristic velocities. This linearity can be concisely.expressed by the matrix equation 

( ) ( t ( J  
F K, K ,  Ks Uo 

To/a = - y a  L, L ,  Ls f la  • [3.6] 

Ap +A \ M, M, Ms - V,, 

The intrinsic scalar resistance coefficients, K, L and M, appearing in the 3 x 3 matrix 
are dimensionless functions, dependent only on the sphere-tube geometry, i.e. upon 
a/Ro and b/R o. In particular, they are independent of the viscosity, of the velocities Uo, f2 
and V,,, and of the absolute sizes of the sphere and tube. These coefficients are all positive, 
with the possible exception of K, and L,, which may assume either sign. The latter two 
elements are equal: 

K, = L,. [3.7] 
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Though this equality was originally derived by Brenner (1964) for particle motion in an 
unbounded medium, it holds also for bounded flows. Bungay & Brenner (1973) have shown 
that the resistance coefficient matrix in [3.6] is both positive definite and symmetric. This 
symmetry is manifested by the additional identities, 

M, = K,,  M, = L,. [3.8] 

4. SPHERE TRANSLATING THROUGH A QUIESCENT FLUID 

Detailed derivations of the asymptotic values of the resistance coefficients in [3.6] for 
small gap widths are given by Bungay (1970). This singular perturbation expansion pro- 
cedure will be illustrated by examining the purely translational motion of the sphere 
(fl = 0) through an otherwise quiescent medium (V= = 0). Such motion can be achieved 
physically in a vertical tube by the settling of an inhomogeneous sphere, which was loaded 
to prevent rotation. 

and 

in which 

Inner region variables 

Outer region equations 

Define the following dimensionless "outer" variables, denoted by a prime: 

v + = Uo v', [4.1] 

p+ = (#Uo/a)p', r o = (ar', ~,az'). [4.2] 

In terms of these, the governing equations for the outer region, away from the gap, as 
obtained from [2.8]-[2.12], [2.16] and [2.17], are 

V'zv ' - V'p' = 0, [4.3] 

V'. v' = 0, [4.4] 

v' = k on Sp, [4.5] 

v' = 0 on Sw, [4.6] 

v' ~ 0 as Iz'l ~ ~ ,  [4.7] 

, w'r' dr' + ~-~ dr' dz' -- (z') 2 + q'[q~], [z'[ < 1, [4.8] 

f q ' d c ~ = - ~ ,  [4.9] 
rc 

V' = aV, q' = q/Uoa 2. 

The equations describing the fluid motion in the inner region, in the proximity of the 
small gap, are obtained by introducing two dimensionless geometric parameters, represent- 
ing respectively the lateral position of the sphere, 

e = b / ( R o -  a), 0 < e <  1, [4.10] 
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and the clearance between the sphere and wall, 

= (Re  - a ) /a ,  0 < ~ < oo. [4 .11]  

Closely-fitting spheres are characterized by ~ << 1. Consequently, 8 serves as a small 
perturbation parameter. 

A new radial variable may be defined for the gap region between the sphere and the wall as 

x' -- 1 + 8(1 - e cos ~) - r'. [4.12] 

In terms of this new variable, the equation of the sphere surface adopts the form, 

x ~ - -  1 + 8(1 - e c o s  ~b) - E1 - (z')2] a/2, Iz'l < 1. 

For lz'l << 1 the square root term in the above equation may be replaced by its power 
series representation, yielding 

x~ -- 8(1 - e cos ~) + ½(z') 2 + ~(z')" + ~t~(z')6 + ' " .  

suggests "stretching" the coordinates by defining the new coordinate This expansion 
variables, 

X = x'/~ [4.13] 

and Z = z'/e 1/2. [4.14] 

No resealing of the angular variable is necessary, owing to the fact that the primary varia- 
tions in gap width occur in the x' and z' direetion~ Accordingly, we may put @ = ~b. These 
yield 

x, = H + ~sz" + ~ 8 2 z  ~ + . . .  [4.153 

as the equation describing the sphere surface. Here, 

HE@, Z] -- ~= + ½Z =, [4.16] 

and ~[~] -- (1 - e cos~) s/2, [4.17] 

are frequently recorring ftmetions. 
The expansion of the wall surface [3.13 becomes, 

Xw -- ½8(e sin @)" - ½~2(e sin @)2 + . . . .  [4.183 

Comparison of [4.15] with [4.18] reveals that H constitutes the dimensionless separation 
between the two surfaces to terms of zero order in 8, when expressed in inner coordinates. 

Introduction of [4.12]-[4.14] into [4.8] yields 

~ f x ' . w ' d X  = q' + 0(8) ,  

with q' taken to be of zero order in 8. Since Xp is also of zero order, the integral in this 
equation can be made of similar order by defining a stretched axial velocity component as 

W= Bw'. [4.19] 
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In the continuity equation [4.4] the conversion of outer variables to those inner variables 
already defined suggests the additional definitions, 

U = ~1/2u', [4.20] 

V m. el/2/) '. [4.21] 

Lastly, the k-component of [4.3], when transformed to inner variables, leads to the follow- 
ing rescaling of the pressure field: 

P = eS/2p '. [4.22] 

Inner  expansions  

Through the stretching procedure, inner velocity and pressure fields have been defined 
which are each of zero order in e in the limit as 8 --, 0. They still depend, however, upon 
8 in an unknown manner. It is now assumed, subject to a posteriori justification, that for 

<< 1 these fields possess  the following power series expansions: 

U = Uo + eU1 + e2U2 + " " ,  [4.23] 

V = V 0 q.-/~V 1 -~- 82V2 -4- ' ' - ,  "'i[4.24] 

W= W o + eW 1 + e2W2 + "-', [4.25] 

and P = Po + ePl + 82P2 + " " ,  [4.26] 

in which the subscripted fields are independent of e, depending only upon (X, ~, Z) and e. 
The quantity q' varies with ~. Its asymptotic expansion is similarly assumed to be 

q' ---- Qo q-/~QI q- g2Q2 4 " ' ' ,  

wherein each of the ordered perturbations, Q~, are functions of @. 
The outer variables in the differential equations [4.3] and [4.4] may each be converted 

to inner variables via the definitions [4.12]-[4.22]. Following substitution of the asymptotic 
expansions [4.23]-[4.26] into the resulting equations, terms of like order in e may be 
collected, and the separate terms of O(e n) thereby obtained each set equal to zero for 
n = 0, 1, 2 . . . . .  This process produces the following ordered set of differential equations. 
For the zero order terms, 

a P o / a X  = O, 

d2Vo/OX 2 - OPo/O~ = O, 

a2Wo/OX 2 - a P o / a Z  = 0, 

aUo/aX - aWo/aZ = o. 

Similarly, the first order terms yield 

OP i / a Z  = - 0 ~ Uo/OX 2, 

[4.27] 

[4.28] 

[4.29] 

[4.30] 

[4.31] 

~ 2 V 1 / ~ X 2  - ~ P 1 / ~  = ~ V o / ~ X  .Jr ( X  - ?;2)~2Vo/~X2 - ~ 2 V o / ~ Z 2  - e sin • ~ 2 U o / ~ X 2  , 

[4.32] 
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d2W1/3X 2 - dPI/dZ = aWo/~X - d'Wo/dZ a, [4.33] 

dU, /3X - dWt/dZ = Uo + e sin • dVo/3X + dVo/~O. [4.34] 

This procedure may be applied up to any desired order in e. 
This same process may be repeated for the inner-region boundary conditiom [4.5], 

[4.6], [4.8] and [4.9]. However, such a procedure fails to be complete since the boundary 
conditions would still be implicit functions of e in consequence of the surface equations 
[4.15] and [4.18]. To render the e-dependence from the wall surface explicit, velocity 
boundary conditions can be transferred to X = 0. 

Transfer of boundary conditions 

Let ~F [3(] be one of the three stretched velocity components. The Taylor series expansion 
of each perturbation field ~F~ about X = O, when evaluated at X = Xw, leads to 

~FEXw] = ~Fo[0] + ~(~PI[0] + ½e 2 sin 2 • d~Po[0]/dX) + O(e2). 

Similarly, the boundary conditions on the sphere surface can be transferred to X = H 
by use of the expansion, 

~FEXp] = ~Po[/-/] + ~(~I[H] + ½[H - ~212 d~Po[/./]/dX) + O(~2), 

wherein the definition of H given in [4.16] has been used to replace Z in the coefficients. 
The  concept of transfer of boundary conditiom in perturbation procedures is discussed 
by Van Dyke (1964). 

The integration limits in the continuity condition [4.8] must be brought into agreement 
with the new hypothetical boundaries, X = 0 and X = H. This is effected with the aid of 
the following series representation, obtained by Taylor expansion and application of 
Leibnitz' rule: 

' ek [x ]  d X  = wk[x  d X  + 8(½[H - T ' ] ' ek[H]  -- ½e 2 sin'o'e [0]) + 

Setting the coefficient of the zero order term in each of the expanded, inner boundary 
conditions equal to zero gives, 

Uo = Vo = I4Io = 0 at X ffi 0, [4.35] 

U0 = Vo = Wo = 0 at X ffi H, [4.36] 

~oWo - Qo = 0, [4.37] dX 

f_  Qo = - ~ .  [4.38] dO 

Likewise, the set of first order boundary conditions thereby obtained is, 
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V l  = 

~ =  

w~= 

U 1 = 

h =  

-- ½e 2 sin2~ ~Uo/"?X , 

- }e 2 sin:O OVo/~X, 

- ½e 2 sin2O OWo/~X 

- ½ ( H  - z 2 ) 2  ~Uol~X, 

- ½(H - "c2) 2 ~Vo/cX, 

at X = 0, [4.39] 

at X = H, [4.40] 

W 1 ~- I - ½ ( H  - "c2) 2 ~WolaX 

fi'  ffi' fi' W z d X -  Q t - - H - ' r  2 -  3-O V o d x d Z + ( H -  z 2) W o d X -  

-f"of]Wo[O,®,Z]dOdX, [4.41] 

f ~ Q ,  = [4.42] d~ 0. 
R 

Inner perturbation fields 

The ordered systems of perturbation equations must be solved sequentially. Equations 
[4.27]-[4.30] and [4.35]-[4.38], representing the zero order set, are analogous to Reynolds 
lubrication-theory equations. Each successive higher-order system represents an additional 
improvement over the accuracy of the conventional lubrication theory approximation. 

Each set of perturbation differential equations has been written in a form whereby only 
the unknown quantities sought appear on the left-hand side of each equation. Comparison 
of the structure of the first-order system with that of the zero-order system reveals that the 
left-hand sides of the corresponding pairs of equations are identical in form. The fight-hand 
sides contain only constants or functions known from the solutions of the lower-order 
systems. Thus, the procedure for solving the zero-order system applies generally to the 
solution of every other ordered set of equations--but the extent of the algebraical rr anipula- 
tions increases significantly as one progresses to higher-order approximations. 

Though the ordered systems of equations generally require the simultaneous solution of 
four coupled partial differential equations, their structure is such that they can be treated as 
easily as though the equations involved only ordinary derivatives. The solution procedure 
will be demonstrated in detail for the zero-order system. 

Zero-order inner solution 

Equation [4.27] indicates that the dynamic pressure does not vary across the gap. This 
is the usual lubrication-theory assumption, here rigorously substantiated by the perturba- 
tion analysis. A partial integration of [4.27] gives for the pressure distribution, 

Po[X, ~, Z] = fo[~, Z]. [4.43] 

Substitution of the above into [4.28] and [4.29] then gives 

a2VolaX ~ = afo,'a~, a~WolaX ~ = afolaZ. 



MOTION OF A SPHERE IN A F L U I D - F I L ~  TUBE 37 

Integration of the latter equations with respect to X, and utilization of boundary conditions 
[4.351 and [4.36], yields 

Vo -- ½(x: - ttx)afo/ e , [4.44] 

W o = ½(X" - H X ) ~ f o / e Z .  [4.45] 

The continuity equation [4.30] then provides the radial velocity component, 

uo=T  -d o z j  

On substituting for Wo in [4.37], one obtains 

t~fo/dZ = - 12Qo/H 3. [4.47] 

Integration from Z = - oc to + oo, with use of the definition of H given in [4.16], then yields 

fo[~, - oo] - fo i l ,  + ~ ]  = 9nx/2Qo/2¢s. 

Hence, from [4.43] it follows that 

Po[X, ~, - oo] - Po[X, ~, + ~ ]  -- 9nx/2Qo/2X s. 

The left-hand side, APo, say, representing the zero-order contribution to the additional 
pressure drop arising from the presence of the sphere,, is necessarily constant, independent 
of X and ~. Hence, 

Qo = 2zS A P o / 9 n x / 2 .  [4.48] 

When substituting into the remaining boundary condition [4.38], this yields 

AP o = - ~ x / 2 t / o ,  [4.49] 

in which t/o is a function of the lateral position of the sphere in the tube, given by 

[;: ]' To[el = 2x ,5 dq> [4.50] 

The integral appearing in [4.50] was originally evaluated by Christopherson & Dowson 
(1959) via a method which is outlined in the accompanying Appendix. Variation of the 
function with the lateral position of the sphere is shown in figure 2. Integration of [4.47] 
yields 

9 _V Z ~ Z ~  3 2Z~" -1 
fo = 42no aretan--  + + 3H'42J' [4.513 

from which all of the zero-order inner fields can now be obtained. 

Firs t -order  inner f ie lds  

Expressions for the first-order inner velocity and pressure fields were similarly derived 
(Bungay 1970) for a non-rotating sphere translating at an eccentric lateral position. For 
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present purposes it suffices to present only the result obtained for the first-order pressure 
drop, 

AP x = --~/2r/o[~.-~ + r/l]. [4.52] 

The eccentricity function ~t possesses a zero value for a concentric sphere; i.e. ~x[0] = 0. 
For all lateral positions, the value of r h obtained from the relation 

; f" l 193 90(1 - e 2) z 3 dO + 103 ~7 d~  • [4.53] 
~l[e] = 60 12tmL • - ,  

An expression for ~ in terms of tabulated functions is derived in the Appendix. 

Second-order inner fields 

Due to algebraic complexities, the second-order fields were calculated only for the 
axisymmetric case, where the sphere translates with its center along the tube axis. The 
second-order pressure drop obtained for this case is 

AP2[e = 0] = n~/2 ~50--0--0--0--0--0--0~] =- 2.2744. [4.54] 

Resistance coefficients 

From the defining equation [3.6] for the pressure drop resistance coefficient, along with 
definitions cited in [4.2] and [4.22], one can construct the asymptotic expansion, 

M, = -n (1  + s)2s-5/2(APo + sAP t + s2AP2) + O(1). [4.55] 
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In conjunction with [4.49], [4.52] and [4.54] this leads to the relation 

Mt--:n2~2r/°t~-s/2[l+~(~-----7+r/l)  + e 2 (  101'093 )1 + + .I,  + [4.56] 

in which the, as yet, undetermined dependence of the terms of O(¢ 1/2) and O(1) upon the 
lateral position of the sphere is represented by the functions r/, - ~,[e] and m, = mr[el, 
respectively. Although the functions r/t and mt are unknown, their values should be finite 
for all e. In particular, r/, vanishes for the axisymmetric ease, e = 0. The function m,, which 
is of O(1) with respect to ~, cannot be evaluated without detailed knowledge of the solution 
of the outer region equations. 

~ t  

The hydrodynamic force exerted by the fluid on the sphere is F = t dS.  ~ in which 

n = - I p  + #[Vv + (Vv)?] is the Newtonian pressure tensor. The undisturbed flow 
contribution n °, appearing in the decomposition n ffi n ° + n +, is a regular field within the 
fluid volume bounded externally by the surface Sp, and hence makes no contribution to 
the force integral. Expressed in cylindrical coordinates, the scalar force is thus given in 
terms of the disturbance fields by the relation 

; f:[/0u- o -1 F -- 2 , #r ~ ¢9z + ~r ] + z + ~gz /_1,=,, dz de. [4.57] 

The fact that the integrand is an even function of z has been used to halve the interval of 
integration. 

The domain of the z integration in [4.57] may be further divided into two portions, 
corresponding to the two regions of the perturbation solution. Let z/a = ( << 1 be an 
arbitrary plane lying in the common region of validity of both the inner and outer expan- 
sions. To obtain the outer contribution to the resistance coefficient, [4.57] is first rewritten 
in the dimensionless variables appropriate to that region. The defining relation [3.6] 
between the force and the resistance coefficient is then employed to produce the expression 

, i O z , + T T ,  + + Tz,/j,,., dz'd¢. [4.58] 

Outer contributions to the force that are singular in ~ arise only from the pressure field, 
since the outer velocity components are each of zero order in ~. Equation [4.58] thus 
becomes, 

K~,) = /APo AP, AP21 f~  f ) z '  dz' de + O(1,. [4.59] 
- , 

Physically, this result can be interpreted as indicating that the dominant contribution to 
the force is not the shear stresses per se, but rather the difference between upstream and 
downstream pressures acting on the sphere. Hence, from previous pressure drop results one 
finds that 

--,~°~- ~ I + ~  - - + r  h +~2 50,400 2~h +P/t ( 1 - ~ 2 ) + O ( 1 ) .  
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The contribution from the inner region is similarly to be obtained from the relation 

:] ::/'"~[ ( OU OW) ( 2,wll dZd@. K~ l) -~ --2£ -3/2 = (I -- ~Z2) t/2 ~,~-~ "~ + Z -P + aZl..]x=xp 

Use of asymptotic expansions [4.23]-[4.26], and transference of the integrand evaluation 
to X = H, ultimately leads to 

K~,, = ~:" '  V f".. _.-o f"'"' ( Z,o., OWol ox , , . ,  d~'® + ,  r" . _..f""" ( o z, .  + o,,,, ox 

aUo ~Wo _ 2z °w°l ] 
- a"-Z ÷ [I - ~-~ aZ ]x..u dZ dO + 0(~ 2) • [4.60] 

Utilization of only the zero-order fields yields 

, ~2 ~ +  a rc t an~+  ~ +O(~) dO. 

Expandt the intmgrand as a power series of I/¢, and perform the integration to obtain 

KI ~ = -9:2#2 ,lot-5/2[¢ + O(8)]. 

Inclusion of higher-order fields yields the more accurate result, 

t_9,7o + go + ~,Tt - - f ie  + 5 o , ~  2,1, + '1, + o(1),[4.61] 

1 f_ dq~ in which ~[e] --- ~ , (1 - ecos q~)~/~ [4.62] 

This integral is evaluated in the Appendix. 
The pertubation expansion of the resistance coefficient is the sum of the inner and 

outer contributions, 

K[e] = K(°~[e; ~] + K")[e; (]. [4.63] 

This sum must not contain ~, since this quantity is arbitrarily defined. Adding together the 

? Following the reasoning of Goldman, Cox & Brenner (1967), ~ may be set equal to B~', where B is any 
positive constant, and • is a constant such that 0 < ~, < ½, Thus, the outer variable ~ must tend to zero as 8 --. 0. 
On the other hand, the inner variable z = ¢/8112 = B~'- t/2 must tend to infinity in the same limit. The asymptotic 
agre~nent between a typical inner solution ~FIZ], and the complementary outer solution, ~ [z'], in the region 
of overlap can be expressed by the asymptotic formula 

The foregoing is a statement of the so-called "matching principle" (Van Dyke 1964). Here, we need only note 
that ~ = (B/~ f f2)e ' -  I/2 _., ~ as 8 ~ 0. 
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calculated inner and outer terms gives 

K,=~n2x/2rlo~-S/2[l+8(7~+th) +~2( 9787 
50,400 

7 : 4 16rtz 
~e -.~h +~o +th) ]+k, +O(el/2), 

[ 4 . 64 ]  

F,+o / + , _ = + o  +o ~ -  cos ¢ + ~ L ~ sin ¢ + ~-~- ~-# ~z 

+++0 , +o+ol ] } 
aX OZ + g a--~-i- ] cos ¢ + O(e ~) dZ de. [4.66] 

X = I;I 

Only terms which are singular in ~ in the above expansion have been evaluated. No singular 
terms are contributed by the outer solution, as follows from [4.65] in conjunction with the 
nonsingular character of the outer region velocity components. Summing the inner and 
outer contributions, L[~] -- L(°)[e; ~J + L(°[e; ~], then leads to, 

Lt = ~'~2x/2 e~oe-3n[l + e ( ~ +  r/l) ] + t, + O(el/Z). [4.67] 

The functions k, -- k,[e] and I, = l,[e] have been inserted into expansions [4.64] and [4.67], 
respectively, to represent the terms which are of order unity with respect to the expansion 
parameter e. 

For a concentrically-positioned sphere (e- -0g the resistance coefficient expansions 
[4.56], [4.64] and [4.67] simplify to 

[ 77 79'8138zl 
K, = n2x/2e-s/2 1 + W e  + 50-'0-'0-'0-'0-'0-0~ .J + k,[0] + O(el/z), [4.68a] 

L, = O, [4.68b] 

[ 1 5 7 1 0 1 , 0 9 3 ]  
M, = rc=~/2e -s/2 1 + --~--e + 50,------~e = + mt[0] + O(~'n). [4.68c] 

Expansion [4.68a] complements the calculation of the force resistance coefficient 
performed by Haberman & Sayre (1958} for a single, concentric sphere. Their solution, 

whence it is seen that ~ properly cancels. 
The hydrodynamic torque acting on the sphere about its center, 

To = ~ ro x (dS.n+), 
,,$ 

P 

when formulated in cylindrical coordinates is given in scalar form by the expression 

L o=+1o  , + "  , To = 21~ 2rz - (r 2 - z ) I"~-z + cos ¢ 

[ (-~°'~ ,_o,+ i io,~ + ,o++ll } 
- rz rar(r J + r a¢] + z2~ az +-r aC]_jsin~b ,=, ,dzd¢" [4.65] 

When the contribution from the inner solution is written in stretched variables and 
expanded in P. it eventually yields 
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which is equivalent to the outer solution for axisymmetric fluid motion, produced con- 
vergent results for K~ in the range 0 _< a/Ro < 0.8. In turn, their analysis was extended 
by Wang & Skalak (1969) to include effects of particle-particle interactions on both the 
pressure drop and force coefficients for a train of identical, equaily-spaced, concentric 
spheres over the same a/Ro range. Values for the concentric resistance coefficients can be 
computed to well within an accuracy of 1 per cent over the entire range, 0 < a/Ro < 1, by 
utilizing the following composite expressions (Bungay 1970), obtained by combining the 
perturbation expansions [4.68] with asymptotic expansions for a/Ro << 1 derived from 
Haberman & Sayre (1958): 

K , -  - - - . - - - 5.61172 

-0.336322 - 1.21623 + 1.6472 '~, 

and 

M, - -  7t242(  ! - 2)-s /2 1 + ~ ( 1  - ~) 5 ~ ( 1  - ;t): + 4.0180 - 3.9788,~ 

- 1.921522 + 4.39223 + 5.00624. 

The parameter appearing in the above expressions is the radius ratio, 2 = a/Ro. 

Inertial effects 

Having obtained the zero-, first- and second-order contributions to the resistance 
coefficients, we are now in a position to argue that these (singular) coefficients represent the 
asymptotic solution of the complete Navier-Stokes equations, to the order in e indicated. 
More precisely, we will demonstrate that the inertial terms in the Navier-Stokes equations 
affect only the third- and higher-order inner solutions. The argument hinges on non- 
dimensionalizing the Navier-Stokes equations in such a manner that the appropriate 
Reynolds number appearing therein is independent of the small expansion parameter e. 
Explicit arguments will be presented for the translating sphere case. Subsequently, it will 
be demonstrated that the same general reasoning applies equally well to the rotating and 
stationary sphere cases too. 

When the fluid is stationary (V, = 0), translational motion of the sphere comes about 
through the action of an external gravitational force applied parallel to the tube axis. 
Equal and opposite to this is the hydrodynamic, force F exerted by the fluid on the sphere. 
For a fixed value of this force, the translational velocity of the sphere is strongly dependent 
upon the gap width. Indeed, [3.6] and [4.64] show that as e ~ 0, the translational velocity 
of the sphere is asymptotically of the form Uo .~ Ces/2lFI/#a, where C = O(1). This suggests 
the choice of v. = IFI//u~ as a characteristic velocity which is independent of e. For a fixed 
value of the force, this is the velocity which characterizes the outer flow region. 

Accordingly, the outer dependent variables are nondimensionalized via the scheme 
v = v.v' and p = (l~v./a)p', rather than [4.1] and [4.2]. Concomitantly, the appropriate 



MOTION OF A SPHERE IN A FLUID-FILLED TUBE 43 

Reynolds number is 

Rer = plFlu  -2 ,  [4.693 

which is independent of ~.. In place of [4.3], the dynamical equations governing the fluid 
motion in the outer region when inertial effects are sensible are, therefore, 

V'2v ' - V'p' = ReFv'. V'v'. [4.70i 

Maintaining the external force constant dictates that the pressure field remain t,nstretched 
in thc inner flow region, whence p' = P. Stretching of the inner velocity components is 
therefore to be performed according to the relations 

1/' = £ 2 U ,  I "  -~- ~2V.  w '  ~-. g3/2W~ 

in present circumstances. The~  definitions now appear in place of [4.19]-[4.223. Cor- 
respondingly, the requisite expansion of the function of integration appearing in the 
continuity relations is now. 

q, = ~s 2~Qo + r.Ql + F.2Q2 + ...}. 

Symbolically, then. the Navier-Stokes equations pertaining to flow within the inner 
region become 

V2V - VP = EaReFV • W .  [4.71] 

For a fixed value of the external force, the inertial terms appearing on the right-hand 
side of the above are of O(r. a) with respect to the viscous and pressure terms. For a fixed 
value of Re  r, however large, one may expand the inner field (V, P) as an asymptotic expan- 
sion in the small parameter e,. Clearly, the inner fields of orders zero, one, and two, that 
we have previously calculated on the basis of Stokes' equations IRer  = 0). are solutions 
of the complete Navier-Stokes equation [4.71]. The singular terms in the resistance- 
coefficient expansions [4.56], [4.64] and [4.67] are thereby shown to be uninfluenced by 
inertial effects. Stated alternatively, fluid inertia contributes only terms to the perturbation 
expansion of the resistance coefficients that are regular in e. Such terms are small compared 
with the singular terms in the limit where ~ << 1. 

Inertial effects can. of course, manifest themselves in other ways than through the three 
resistance coefficients. In particular, they may give rise to a lateral force, in addition to the 
axially-directed force component of [3.4]. According to the argument given, such a lateral 
force would necessarily be nonsingular in e. Nevertheless, the nonsingular contributions 
could significantly affect the system behavior. If no external force were imposed to counter 
this lift force, the sphere would undergo lateral migration. No analysis has been performed 
for a closely-fitting sphere comparable to the lateral migration theory of Cox & Brenner 
t1968), for a sphere whose radius is small compared with that of the tube. 

These remarks regarding inertia pertain to the case of a translating sphere. Similar 
conclusions, however, apply also to both a rotating and stationary sphere. For the rotational 
case the corresponding characteristic velocity is v, = I T,,I/l~a 2, the Reynoldsnumber being 
IZotp/~2a. 
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5. SPHERE ROTATING IN QUIESCENT FLUID 

In this section we present asymptotic expressions for the resistance coefficients for a 
sphere, rotating in accordance with the relation fl  --jfl, and subject to the conditions 
that Uo -- V,, = 0. Derivation of these results follows closely that of the preceding trans- 
lational ease. Equations [4.3] and [4.4] constitute the governing differential equations, 
wherein the dimensionless local fields are defined as 

v + = flay',  [5.1] 

p÷ = u.tap'. [5.2] 

In place of [4.5]-[4.9], the boundary and continuity conditions to be employed are now 

v' = 0 on Sp, v' --. 0 as Iz'l --* ~ ,  [5.3a, b] 

v' --- i,z' cos ¢ - ioz' sin ¢ - i:r' cos ~ on Sw, Iz'l < I, [5.4] 

f,i w ±ff'  w'r' dr' + 0¢ 33,, v' dr' dz' - - "  q'[~b], Iz'l < 1, [5.5] 

and [ q 'd¢  -- 0, [5.6] 
d 

with q' = q/fla 3. By following the singular perturbation procedure previously outlined, 
this leads eventually to the relations (Bungay 1970), 

[ ( 1 )  ( 2 3 7 e a - ~  rh 
K, = e70 -3" 1 + ,1 + g i-5 

167---/2 47---2 )1 
+ 9r/o 370 + 7, + k, + O(s), [5.7] 

L, = ~2,/2 ¢-t/2(7oe2 + 273) + 1, + 0(e1/2), [5.8] 

and M, = ~n2,/2 eToe-3n[1 + e(~ + 70 + ¢27,] + m, + O(eXn), [5.9] 

1 l "  cos2 4~ 
d4~. [5.10] in which q3[e] ~ ,~ "¢ L 

As in the translational case, the unspecified bounded functions k,[e], l,[e], m,[e] and i?,[e] 
have been introduced to represent factors which have not yet been explicitly determined. 
In the axisymmetric case, the functions k, and m, vanish. The function r h is reformulated 
in terms of complete elliptic integrals in the Appendix. 

The first of the reciprocity relationships, [3.7], requires that the corresponding terms in 
expansions [4.67] and [5.7] be identical, implying, for example, that k, = l,. Both the force 
and pressure-drop resistance coefficients are identically zero for a concentric sphere. The 
corresponding torque coefficient becomes 

L, = 2zc2x/2 ~-1/2 + l,[0] + O(el/2). [5.11] 



MOTION OF A SPHERE IN A FLUID-FILLED TUBE 45  

6. FLOW PAST A STATIONARY SPHERE 

When the sphere is motionless relative to the tube wall (Uo = f / =  0), the behavior of the 
fluid flowing in the gap between the particle and the wall is described by [4.3] and [4.4], 
along with the following boundary and continuity conditions: 

v' -- -2 i , [1  - (B/Ro) 2 - 2(br/R2o)cos $ - (r/Ro) 2] on Sv, [6.1] 

v' -- 0 on S,~, v' ~ 0 as [z'l ~ oo, [6.2a, b] 

• wr' dr' + ~.~ 'J'J•'~ dr' dz'  = 

+ { [ 1  - (b/Ro)'] (rdRo) 2 -- ~(b/Ro)(r /Ro)  a c o s  4' - ½(r~,/Ro)'}, [6 .3 ]  

IIt  q' d~b = O, [6.4] and 
It 

in which the dimensionless quantities, denoted by the primes, are defined as 

v + = V . v ' ,  [ 6 . 5 ]  

p+ = (l~V,,da)p', [6.6] 

and q = (V=a2)q '. [6.7] 

Utilization of the perturbation scheme leads to the following asymptotic expressions for 
the resistance coefficients (Bungay 1970): 

9 2 ' s'2[ (157)/!01,093 )I 
K, = ~ rc ~/2 r/oe- ' 1 + ~ L'-~" + r?l + ~2 ~ 50,400 + r/, + k, + O(el/2), [6.8] 

L, = ~Tt2x/2 er/oe-3/2[1 + e({-~ + r/1 ) + e2t/,] + I s + O(e), [6.9] 

[ ( , 9 )  :1: 7 4 )] 9x2/2~oe_5/2 1 + e  ~ + ~ 1  + e2 + e2 

+ m s + O(t;t/2). [6.10] 

The leading terms of [6.8] and [6.9] are in agreement with those of [4.56] and [5.9], as 
required by the reciprocity relationships [3.8] and [3.9]. Likewise, the latter formulae 
require that the unknown terms of order unity satisfy the interrelationships k, -- m, and 
l s = m, .  

Setting e = 0 in [6.8]-[6.10] produces the following values of the resistance coefficients 
for a stationary, concentric sphere: 

I 10t,093 1 9n2~/2e-s /2  1 + ~  ~ 5 7 e +  50,400 ~2 +k~[O]+O(el /2) ,  [6.11a] K ~ = ~  

z , ,  = o ,  [ 6 . 1 1 b ]  

[ 7 9 3 0 1 , 5 7 3 ]  
9~t2x/2e-s/2 1 + + ~ e  2 + m,[O] + 0(~1/2). [6.11c] 

M, = ~ 56~ 50,40o 
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As in the translational case, values of the force coefficient were computed by Haberman & 
Sayre (1958) for a single, concentric sphere, and by Wang & Skalak (1969) for a sphere in 
an infinite train of concentric spheres. Convergence difficulties restricted the validity of 
both sets of calculations to the range 0 < a/Ro < 0.8. Wang & Skalak (1969) also determined 
values for the pressure-drop coefficient in this range. Both coefficients can be evaluated 
to within an accuracy of 1 per cent for any radius ratio, 0 < a/Ro < 1, from the following 
ad hoc composite expressions (Bungay 1970), obtained by combining the perturbation 
expansions [6,11] with asymptotic expansions for a/Ro << 1 derived from Haberman & 
Sayre (1958): 

9 z [ 7 2 2 2 7 ( 1 _ ) , ) 2 ] + 4 . 0 1 8 0 _ 3 . 9 7 8 8 ) ,  K, = ~ rc 4 2  ( 1 -  )`)- '/z 1 + ~ ( 1 - 2 )  5 0 , ~  

- 1.9215), 2 + 4.392), 3 + 5.006), 4 , 

29 97,453 ] 
9r~2 2(1. /  _ ),)-,/2 1 + ~-~(1 - 2) + 50-0-0-~(i - )`)2 _ 62.2680 - and M, = 18.509)` 

- 12.156)` 2 + 9.152 a + 43.17), 4, 

in which ), = a/Ro. 

7. H O M O G E N E O U S  N E U T R A L L Y - B U O Y A N T  S P H E R E  IN A P O I S E U I L L E  FLOW 

The hydrodynamic force and torque vanish for a homogeneous, neutrally-buoyant 
sphere. In these circumstances, [3.6] yields the following particle/fluid velocity ratios: 

U_o = - K , z . , .  [7.1] 
I'm K,L, - K,Lf 

fla K,L, - K,L, 
I'm K,L, - K,L, [7.2] 

in addition to the pressure-drop force expression. 

 p*A = uV.a  M,  - M , V .  - M,  • [7.3] 

Substitution of the various resistance-coefficient perturbation expansions from Sections 
4 to 6 into [7.1]-[7.3] yields 

= 1 l - ~ e + ~ e /  e n , + e  2 ~ +  e 2 + 9 7 o  I +O(es/2) ' [7.4] 

f2a e*/2At + ee + O(e 3/2) 
- -  = [ 7 . 5 ]  
V,, i + el/2A, + O(e) 

and Ap+Ro/#V,, = 4rr~/2 F/2e -1/2 + O(1), [7.6] 

in which A,[e] = (l, - l,)/2zt24'2rh, and A,[e] = l,/2rc2x/2 r h . For the concentric position 
(e = 0), the coefficient A, is zero. There is evidence (Bungay 1970) in the evaluation of the 
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torque coefficients L, and Q to suggest that the functions I, and/,  are identical. Hence A, 
may be identically zero for all e, in which case the velocity ratios would be 

=1 1- 6+6" +9.o! [7.7] 

~"~a 

- -  = 6e + O(63n). [7.8] 
v. 

I n  the limit e --, 1 the ql functions may be replaced by asymptotic expressions [A.9]- 
[A.12] of the Appendix. For 6 held constant the resistance coefficients then adopt the 
limiting forms, 

K, ,-- 4~t8-1/2 In ( l ~ e )  , [7.9] 

L, ~ 47re- 1/2 ha ( l ~ e )  • [7.10] 

4 1/2 in ( l _ ~ e ) ,  -[7.11] K, =/., ,  '-. - -~n8  + 

K, = M, "- ~,}~na6 -5/2, . [7.12] 

Ls = M, ~ T42~n3e -a/2, [7.13] 

M, ~ ~}]~na,- s/2, [7.14] 

for e --* 1. The above expressions indicate that [7.1]-[7.3] can be approximated by 

UJV,,.-135n2/1024e2 In (1 3~_2 el ,  [7.15] 

Da/V,~  135n2/1024~ In (1 3 ~ 2  e),  [7.16] 

Ap + RJpV= ~ 135/256n2e s/z, [7.17] 

in this limit. 
It appe~trs from [7.7] that the translational velocity is quite insensitive to changes in the 

lateral position of the sphere for most e < I. When the sphere moves along the tube axis 
its velocity is 

/E 4 ] -- 1 1 - ~e + 6 = + O(6 s/2) : [7.18] 

Displacement of the sphere to eccentric positions decreases its velocity only slightly, unless 
e is very close to unity. Even when e = 0.98 the velocity ratio in [7.7] decreases by only 
4 per cent from the concentric value given by [7.18] for e = 0.1. Thus, for most eccentric 
positions, the sphere translates faster than the mean fluid velocity. On the other hand, 
[7.15] suggests that the sphere velocity would be much less than the fluid velocity for a 
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sphere which is nearly in contact with the tube wall Theoretically, if such contact did exist, 
the sphere would remain stationary, since the velocity ratios in [7.15] and [7.16] reduce to 
zero for e -- 1. 

In the concentric position (e = 0) a neutrally-buoyant sphere translates without rotation. 
According to [7.15] and [7.16] a sphere in the fully eccentric position (e = 1) neither 
translates nor rotates. Hence, the perturbation analysis indicates that the magnitude of the 
angular velocity attains a maximum value at an intermediate lateral position. The direction 
of rotation always corresponds to that for rolling along the nearer side of the tube. For any 
lateral position the circumferential linear velocity at the sphere surface due to rotation is 
always small compared with that due to translation. From [7..15] and [7.16] one obtains 
Da/Uo ~ e for e -- 1. This limiting behavior would require a relatively high degree of slip, 
since fM/Uo = 1 for pure rolling motion. 

The minimum pressure drop is occasioned by a concentrically positioned sphere, namely, 

Ap + Ro/#V= = 47t~/2 ~-1/2 + 0(1), [7.19] 

for e = 0. This result was first derived by Hochmuth & Sutera (1970) using lubrication-theory 
methods. These authors estimated the constant term of O(1) in [7.19] to be - 31.5 when the 
expansion parameter was chosen to be ( R o -  a)/Ro rather than 8. Lubrication theory 
simulates the inner solution of the perturbation analysis. In general, only the leading term 
of such an asymptotic expansion can be rigorously calculated by the former method. 
Rigorous determination of the constant term in [7.19] necessitates knowledge of at least 
the leading terms of the outer expansion. Their calculation transcends standard lubrication 
theory. Accordingly, the value obtained for the constant term by Hochmuth & Sutera (1970) 
should be regarded as empirical It does appear, however, to be of the correct order-of- 
magnitude, based upon their comparison with available experimental evidence. 

Lateral displacement of the sphere from the concentric position leads to an increase in 
additional pressure drop, all other things being equal. This increase could be very con- 
siderable. The perturbation analysis predicts a maximum ueutrally-buoyant pressure 
drop given by [7.17] for a sphere in contact with the wall. If this pressure drop were realized 
it would be larger by a factor of 135~/27t/2048e 2 = 0.2929e -2 than the minimum value at 
the same flow rate. 

8. S E D I M E N T A T I O N  O F  A S P H E R E  I N  A V E R T I C A L  T U B E  

If the sphere density pp is not matched to the density p of the surrounding fluid, the 
sphere experiences a net external force, ~Tra3(pp - p)g, equal and opposite to the hydro- 
dynamic force, F, with g the acceleration of gravity vector. Consider the effect of this 
external force when the tube is oriented vertically as in figure 1, so that g = -gk .  Let the 
tube be sealed at its bottom (Vm = 0), and let the sphere be homogeneous and freely rotatin~ 
such that it suffers no external or hydrodynamic torques. The circumstances thus described 
are commonly realized in the falling-ball viscometer. 

Theoretical behavior 

.Particle velocities obtained from the solution of the matrix equation [3.6] for this case are 
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Uo -- - - -  , [8.12 
#a K,L, - K,L, 

±l ) 
f~ = #a 2 IK,L, - K,Lt  " [8.2] 

Concomi tant ly ,  the pressure drop is 

ApA Ks.L, - K,.Ls 
F = K,L, - K,L, [8.3] 

To evaluate the particle velocities and pressure drop for any lateral position 0 < e < 1, 
one can calculate the resistance coefficients from the expansions of Sections 4-6 and 
substitute the resulting values into [8.1]-[8.3]. Alternatively, for e < 1 one can employ 

9n2/~a +~_~% p5/2 + O(e3), [8.4] 

= x/2 eFe3/2 + O(eZ), [8.5] 
6~zS/zaSr/a 

A p A / [ 4  (58 l e 2  16r/21 ] 
= I  +9,1oI 

the expressions, 

In the limit e ~ 1, use of [7.9]-[7.13] in [8.1]-[8.3] leads to 

: Uo"-F~l/2/4rtlaaln(13-~2_e ), 

~ - Fe a/ 2~#a 2 In \ 1 - el 

ApA 135rr~1024e2 in (3T~_2e) 
F 

[8.62 

[8.7] 

E8.8] 

[8.92 

A concentric sphere (e = 0) settles without rotation. If displaced to an intermediate 
position, the sphere descends more rapidly. Simultaneously, it undergoes rotation in a 
direction opposite to that for rolling along the nearer side of the tube wail. According to 
[8.4], the settling velocity increases monotonically with lateral position until about e =  0.98, 
in which position the sphere settles approximately 2.1 times faster than for e = 0. For 
e > 0.98, the rate of settling decreases, as does the angular velocity. In the limit where 
e = I, a sphere in contact with the wall is theoretically prohibited from moving (Uo = f~ = 0), 
since the finite external gravity force is incapable of generating the requisite infinite shear 
rate, and concomitant infinite stresses at the contact point. 

The perturbation solution further predicts that at some lateral position e, close to unity, 
the direction of rotation changes, as indicated by the difference in algebraic signs between 
the right-hand sides of [8.5] and [8.8]. However, the motion would be very different from 
rolling along the wail. From [8.7] and [8.8] one finds fla/Uo = (1/3)8 << I in the limit e -* I, 
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whereas for rolling without slip, fla/Uo = 1. This limiting behavior is in qualitative agree- 
ment with the theoretical prediction of Goldman, Cox & Brenner (1967) for a sphere 
settling parallel to a nearby plane boundary. 

The leading terms of [8.4] and [8.5], of orders ~5/2 and e 3/2, respectively, have previously 
been derived by Christopherson & Dowson (1959), and by Floberg (1968) from lubrication- 
theory arguments. The lead term in [8.4] primarily reflects the difference in pressure 
between the upstream and downstream surfaces of the sphere. These lubrication-theory 
treatments are deficient in that they fail to demonstrate the singular effect of the local shear 
stresses near the point of closest approach to the wall, manifested by [8.7] and [8.8]. 

The ratio of pressure drop force to hydrodynamic force, as given by [8.3], is identical 
to the ratio of translational to mean velocities for a neutrally-buoyant, homogeneous 
sphere (cf. [7.1]). The existence of this equality was demonstrated generally by Bungay & 
Brenner (1973). Although the settling velocity undergoes a two-fold change with lateral 
position in the range 0 < e < 0.98, according to [8.6] the pressure drop remains essentially 
constant over this same range. If the sphere becomes motionless in the limit e --, 1, as 
required by [8.7] and [8.8], then the pressure drop [8.9] vanishes. 

Comparison with experimental observations 

As discussed in Section 3, no tendency exists for a sphere settling in a vertical tube to 
move laterally in the absence of inertial effects. Several investigators have, however, noted 
a decided tendency for sedimenting spheres to migrate away from the tube axis during the 
course of experiments for which e << 1. 

For particle Reynolds numbers Rep = 2aUop/# in the range 1 0 - 3 <  Rep < 10 -~, 
Christopherson & Dowson (1959) observed that spheres invariably moved toward the 
tube wall, rotating as they settled. For a particular ball and tube pair, characterized by 
e = 0.008, the settling velocity was found to be nearly constant over a decade change in 
Reynolds number. Furthermore, this velocity was very close to the maximum predicted 
by the leading term of [8.4]. In this same Rep range, larger clearances (0.0088 < e < 0.081) 
yielded settling velocities intermediate between the leading-term maximum and concentric 
minimum. Both the direction and the order-of-magnitude of the rotary velocity agreed 
with the leading-term prediction of [8.5]. Visually, the eccentricities appeared to be near 
unity. On this basis, Christopherson & Dowson (1959) concluded that the spheres ulti- 
mately adopt a particular eccentric position, corresponding to a maximum settling velocity. 
They argued that the eccentric location corresponding to this maximum value varied due 
to the increased influence of the higher-order terms at the larger clearances. 

Earlier experimental work by McNown et al. (1948) corroborates the tendency for closely- 
fitting spheres to migrate to eccentric positions for Rep > 10- 3. In contrast to Christopher- 
son & Dowson (1959), these authors found that the spheres settled concentrically at Rep < 
10-3. Though eccentric positions were observed to result in sphere rotation, McNown (1951) 
implies the direction of rotation to be opposite to that recorded by Christopherson & 
Dowson (1959). 

Both groups of investigators took precautions to insure vertical alignment of their 
tubes. In "rolling-ball" viscometers the tube is intentionally inclined at some angle from 
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the vertical. The component of the gravitational force perpendicular to the vessel axis 
presumably maintains the eccentricity nominally at e = 1. A number of studies have been 
reported pertaining to the operation of these tilted viscometers. Depending upon the angle 
of inclination, and possibly other factors which have yet to be delineated, the balls were 
observed to adopt various modes of rotational motion. Zolotykh (1962) implies that in 
viscometers possessing a typical tilt of llY from the vertical, balls in the range e < 0.20 will 
roll without slipping as they travel down the tube; that is, the angular/translational speed 
ratio for such balls is D.a/Uo = 1. This behavior is corroborated by the findings of McNown 
(1956). Block (1940), on the other hand, ran repeated tests at various angles of inclination. 
When the tube was tilted far from the vertical, he likewise found rolling without slipping. 
Under the same conditions, Block noted that as the tube approached a vertical position, 
slipping would occur, such that fM/Uo < 1. Block did not state that under certain conditions 
the rotation would cease or reverse direction. However, Floberg (1968) found, for clearances 
of 0.0027 < e < 0.012, that at small inclinations of 3-4" from the vertical, the balls appeared 
to settle without rotating. On the other hand. at larger clearances (0.024 < e < 0.094) the 
settling balls rotated in a sense opposite to that for rolling, in some cases continuing to 
rotate at angle of inclination as large as 11.5". 

Thus, there exists a seeming disparity in the experimental observations for the angular 
velocity of a settling sphere nominally in the fully eccentric position. One must refer to the 
eccentricity as nominal in describing the experimental operations, since none of the 
investigators cited make reference to direct measurements of eccentric position. It seems 
reasonable to suppose that some finite separation exists between the sphere surface and 
tube wall when slipping occurs, and that the separation distance, however small, may 
crucially determine the character of the rotation. As noted earlier, the perturbation solu- 
tion does suggest a change in the direction of rotation at an eccentricity very close to, 
but not equal to, unity. According to [8.7] and [8.8], for e ~ 1 rotational movement may 
be difficult to detect in comparison to the translational motion for closely-fitting spheres. 

All experiments are in substantial agreement that the translational settling velocity in 
the inclined viscometer is of the order of the leading term of [8.4]. This contrasts with the 
likely theoretical prediction of zero velocity at e = 1, lending credence to the view that 
the actual eccentricity is somewhat less than unity. The lead term reflects the pressure 
difference prevailing in the fluid above and below the sphere, which would be but little 
affected by small discrepancies in eccentricity. 

These theoretical predictions could well be vitiated by surface asperities, frictional 
contact, or other nonhydrodynamic factors. In the related problem of a sphere moving 
parallel to a nearby plane wall bounding a semi-infinite liquid, Goldman, Cox & Brenner 
(1967) considered cavitation to be the most likely explanation for the observed inconsistency 
between their theoretical ana!ysis and experimental measurements. Pressure peaking in 
the region of minimum separation is common to both problems. Relative to the pressure 
at the midplane, z = 0, the theory predicts a sharp positive peak in pressure on one side 
of the midline, and a symmetrical negative peak in pressure on.the other. Hence, a condition 
exists which is conducive to cavitation, at least in the case of liquids. Floberg (1968) found 
visual evidence of flow patterns in the region of minimum separation which he ascribed to 
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cavitation. Possible consequences of this phenomenon are mitigation of the singular 
behavior of the force or torque as e ~ 1, and creation of a radially directed "lift" force. 

Final remarks concern a facet of the asymptotic solution that may not have been 
recognized in some of the earlier studies. Although the form of the leading term in [8.4] 
was evaluated by several investigators using lubrication-theory arguments, no notice was 
taken of the fact that such approximation techniques cannot discriminate between the 
alternative clearance parameters, ~ and 6 = (Ro - a)/Ro. Christopherson & Dowson (1959) 
as well as Floberg (1968), employ e in their analysis, whereas McNown et al. (1948, 1951, 
1956) use 6. Zolotykh (1962) arrived at an empirical equation in 6 from dimensional 
analysis arguments. Since the leading term is proportional to the 5/2 power of the clearance 
parameter, the choice of e over 6 can make an appreciable difference in the predicted value. 
For example, for 8 = 0.05 (which is in the range common to the experiments just cited), 
the value of the lead term is approximately 14 per cent higher based on e than on 6. The 
complete expansion should converge to a result which is independent of the particular 
clearance parameter employed. Thus, the 14 per cent disparity would indicate that the 
higher order terms are significant. The utility of the perturbation technique consists of 
providing a rational procedure for generating the correct higher-order terms in the 
asymptotic expansion. Further progress with the present problem requires a more detailed 
analysis of the outer expansion. 
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APPENDIX 

Evaluation of the rli functions 

Variation of the resistance coefficients with lateral position for a closely-fitting sphere is 
embodied in the t/i functions defined in [4.50], [4.53], [4.62] and [5.10]. Each of these are 
even functions of the eccentricity parameter e of [4.10], i.e. rh[ -  e] = ~/iEe]. Utilization of the 
substitition ~ = 20, in the manner of Christopherson & Dowson (1959), yields the equi- 
valent forms 

F r ~/2 -]- 1 

.o [ r r ]  ~l[e] = 60  30~(I ~½m) 7/: 90(1 - m) .o  °3d0  + 103.o ¢7d0 , [A.2] 

2 e hI2 
and r/z[e ] = -(1~ - ½m) 1/2 J0 I,d0a [A.3] 

in which ~ = (1 - m sin 2 0) 1/2 and m = 2e/(1 + e). Parameters e and m are equal at the 
upper and lower bounds of their respective intervals, 0 _< e < 1 and 0 _< m _< 1. The 
remaining ei function was transformed by Christopherson & Dowson (1959) into the 
following identity, involving the complete elliptic integrals K[m] and E[m] of the first and 
second kinds, respectively, with parameter m: 

r/3[e] 4(1 -- ½m) 1;2 
= 3~m2 {(8 - 8m + 3m2)K[m] - 8(1 - ½rn)E[m]}. [A.4] 

Integration formula 2.582 - 1 of Gradshteyn and Ryzhik (1965) may be employed to 
establish that 

[ . /2 K[m], [A.5] dO 

" 0  O" 
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0 /2 e73 dO = ~(I - ½m)E[m] - ½(I - m)K[m], [A.6] 

0 "/2 ~r 5 dO = ~ { [ 3 2 ( 1  - ½m) 2 - 9(1 - m)]E[m] - 8(1 - ½m)(1 - m)K[m]}, [A.7] 

a n d  a '  dO -- ~ ( 1  - ½m) ~s dO - ~(1 - m) ~3 dO. . [A.8] 
"0 "0 

E q u a t i o n s  [A.1]- [A.8]  p e r m i t  e v a l u a t i o n  of  all four  r/i f unc t i ons  f rom t a b u l a t e d  va lues  of 

the c o m p l e t e  el l ipt ic  in tegrals .  Resu l t s  a re  p r e sen t ed  g raph ica l l y  in f igure 2. F o r  a sphere  in 

con t ac t  wi th . the  wal l  the  first two  func t ions  a t t a i n  the  f ini te  l imi t ing  values,  

15nx/2  
r/o[l 3 = ~ ,  [A.9] 

128 

Thc remaining two functions arc unbounded in the limit e -4 I, for which their asymptotic 

forms arc 

r/2[e ] x/2 In ( 32 ) 

r t ~ [ e ] ~ V / 2 1 n (  32 ) ~ • [A.123 

Sommaire--Des techniques de perturbation unique sont utilis~es pour 6tudier l'c~,~oulement lent, 
assymetrique autour d'une sphere plac~ eccentriquement darts un tube long, cylindrique circulaire 
rempli de fluide visqueux. Lea r~sultats s'appliquent aux situations dans lesqueiles la sphere occupe 
virtuellement la section entidre du cylindre, de sorte que respace entre la particule et la paroi du 
tube est petit partout par rapport a la sphere et aux rayons du tube. La technique est une ameliora- 
tion par rapport aux analyses classiques de "th~orie de iubrification". 

Des expansions asymtotiques, valables pour de petits espaces sans dimensions, sont obtenues 
pour la force hydrodynamique, le couple et la perte de pression pour un ~oulernent au long d'une 
sphere immobile, ainsi que darts le cas d'une sphere en translation ou en rotation darts un fluide 
autrement immobile. Ces expansions sont utilis~es pour pr~xtire le eomportcment macroscopique 
d'une sphere neutralement flottante en suspension dans un ~oulement de Poisseuille, et d'une 
sphere de sedimentation clans un tube vertical. 

Les r~sultats trouvent une application dans r~oulement capillaire du sang, dans ie transport 
par pipelines de mat~riaux enrob~s et dans les viscosim~tres ~ bille tombante. 

Aus~--Singul~re  St6rungsverfahren werden zur Untersuchung yon langsamem, asymmetrischen 
Flul3 um eine Kugel benutzt, die sich exzentrisch innerhalb eines langen, kreisf~rmigen, zylindrischen, 
mit viskoser Flfissigkeit geffillten Rohres befindet. Die Ergrbnisse treffen ffir Situationen zu, in 
dcnen die Kugel praktisch den ganzen Querschnitt des Zylinders einnimmt, sodaB der Spielraum 
zwischen dem Teilchen und dcr Rohrwand, vergliehen mit den Radien dcr Kug:l ufid des Rohres, 
iiberall klein ist. Das Verfahren stellt einc Verbesserung gegeniiber den fiblichen Analysen der 
"'Abschmiertheoric" dar. 

Es werden asymptotische, ffir kleine dimensionslose Spielriume g~Itige Expansioncm fiir die 
hydrodynamische Kraft, Drehmomen! und Druckabfall ffir FluB, an einer feststel~enden Kugel 
vorfiber, erhalten, sowie ffir den Fall ein~r sich translatorisch bewegenden oder drchenden Kugel 
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in einem andernfalls ruhigen Feld. Diese Expansionen werd¢~ benutzl, urn das makroskopische 
Verhalten sowohl einer neutral schwimmenden, in einem Poiseuille Flul~ schwebend¢~ Kugel und 
einer Sedimentkugel in einem venikalen Rohr vorauszusagen. 

Die Ergebisse werdcn in Kapillarblutflul~, Rohrleitungsbef'drderung yon verkapselten Materialien 
und Fallkugelviskometern verwandt. 

P e 3 m M e - - ~  Hcc~e~oBaH~ M e ~ e t m o r o  aCHMMeTpHtIHOrO Te~eHHg BoKpyr mapa,  pac- 
nonoxem~oro  3xcUeHTpmmCKH BHyTpH ~qHHHO~[ Kpyraog, IIHYtHH~pHqeCXOg r p y 6 ~  Hanon- 
HeHHOg Bg3XOg Telcyzleg cpe]log, r/pHMeHK/IC.,g ~.~.lTy~pHbig MeTO~I BO3MyBIeHH.q. Pe3ym~raT~ 
o~oc~rrcg x no~oxem~m~ s ~OTOpS~x map ~parrg~eczx 3 a H ~ a ~ r  no~n-a ~ro  Bce ce~emm 
nmmH~pa,  Tax wro ~aaop MeX~/qacranei~ a creHxOtt Tpy6~ ae3nc He6oabmog no cpasseHHw 
Kax C pajlgyCOM mapa  TaR g C pa2LqycoM Tpy~H. ~I"OT MeTO~I JlK/IgeTCg 6OYle¢ CoBepmeHH]aM, 
qeM craKnapTH~l aHang3 "TeopFn4 CMa3KH". 

ACln~HTOTI4~ecEHe pacm1~pem~, ~ e n ~ ~ l e  ~n~ ManMx 6ezpa3Mepmax 3a3opon, 
nony~m~m ~ym rT~ponm~aMg~ecxoll cRma, ~L~ xpyTnRIero MOMeHTa H ~ nanem~g ~asncHml 
nOTOXa n p o x o ~ m e r o  Mm~O Heno~iBmm~oro mapa,  Tar~e xax H ~ cny~ax rae map  nepe- 
MemaeT¢~[ Hym npamaeTc~ s cnoxo~sot~ B ~pyrgx orHomeHm~X Texy~etR cpe~e. ~TH O6~,g- 
CHeHHg HpHMellglOTC$1 RRg llpe~icKa3ai-ii~ MaEpocxOIIHtIeQ~OFO IIOI~¢HH~ gax HettTpaJzbSO 
n~asy~ero mapa ,  ~ax ~ mapa  s3semeH~oro s Te~emm FIyazegng ~ ~z~ ocaw~a~o~eroc~ a 

~pTmcam, HOg rpy6e.  
Pe3yn~TaT~ MO~mO Hcnoyrb3osarb ~rm X ~ p H o r o  Tv~emz~ ~posH, ~L~ rpy6onpoao~1- 

sOro TpaHcllopTa 3aLrlm~emuax S Ka/Icynld MaTepHanos H ~ ];~CXO3HMeTpoB c n a ~ a w ~  

mapm~oM. 


